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Abstract: The AB-ring fragment of ciguatoxin was synthesized in ten steps from tri-O-benzyl-D-glucal based
on a highly diastereoselective ring-closing metathesis and subsequent cross metathesis.
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The olefin metathesis reaction has become an important and powerful transformation in organic
synthesis.):2  In our previous study directed towards the total synthesis of ciguatoxin (CTX1B),34 we
established an enantioselective route to the AB-ring fragment.> However, this synthesis was linear and
lengthy, requiring more than 20 steps from D-glucose. In this paper, we describe a highly diastereoselective
ring-closing metathesis® and subsequent cross metathesis’-8 as a rapid and convergent entry to the AB-ring
fragment.®

The synthesis is initiated with the secondary alcohol (1), which is readily available from tri-O-benzyl-
D-glucal in two steps.!® Treatment of the alcohol (1) with ethyl propiolate in the presence of N-
methylmorpholine (10 mol%)!! gave E-enol ether (2) in 95% yield (Scheme 1). Reduction of 2 with
DIBAL-H followed by acetylation gave the y-alkoxy allylic acetate (3) in 95% yield (2 steps). We first
attempted to synthesize key intermediate (7) via a nucleophilic attack of bis-trimethylsilylacetylene (4) to an
oxocarbenium ion (5).!2 The y-alkoxy allylic acetate (3) was treated with 4 (10 eq) in the presence of
various Lewis acids (SnCl,, TiCl,, BF;Et,0, and TMSOTY) in CH,Cl, at low temperatures (from -30 to —5°C).
Although no coupled products were obtained, a significant amount of the secondary alcohol (1) was recovered
in 60-70% yield due to the instability of 5 and poor nucleophilicity of 4. We then examined the
regioselective allylation of 3 utilizing a diethylzinc-mediated umpolung of the m-allyl palladium complex,
which was recently developed by Tamaru et al.!3 The allylic acetate (3) was treated with Pd(PPh,), (10
mol%), diethylzinc (5 eq), and aldehyde (8)'4 (4 eq) in THF. An allylic zinc intermediate (9) generated in
situ was regioselectively reacted with 8 to yield a diastereomeric mixture of y-adducts (10). The mixture was
purified after removal of the TBPS group to give diol (11) as a diastereomeric mixture in 30% yield from 3.
Deoxygenation of 11 with I,, PPh;, and imidazole in toluene afforded an acid-sensitive triene (7) in 68%

yield.15
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Reagents and conditions: a) ethyl propiolate, N-methylmorpholine (10 mol%), CH,Clp, 1t, 95%; b) DIBAL-H,
CHCly, -78°C; ¢) A0, pyridine, rt, 95% (2 steps); d) Pd(PPh3)4 (10 mol%), ZnEt; (3.5 eq), 8 (4 eq), THF, 1t, 60
h; e) TBAF, THF, rt, 30% (2 steps); f) I (6 eq), PPh; (5 eq), Imidazole (10 eq), toluene, 1, 16 h, 68%.

The diastereoselective ring-closing metathesis reaction of 7 using ruthenium catalyst (12) (10 mol%)
in CH,Cl, (0.015 M) was complete within 30 min to give 14 exclusively in excellent yield (95%) (Scheme 2).
The less hindered allylic group of 7 is likely to react rapidly with 12 to form a carbene complex (13), which
should undergo an equilibrated ring formation with the diastereotopic vinyl groups to yield the most stable
(14).6:16  The stereochemistry of 14 was determined by NOE experiments.!? The final cross-olefin
metathesis reaction of 14 with the olefin (15)!8 (5 eq) using 12 (40 mol%) proceeded in CH,Cl, (0.02 M)
under reflux to give the desired (16) together with the C5 epimer (17), both of which possess 3,4-(E)
geometry. Neither the protecting group manipulation of the diol (15) nor changing the concentration of 15
increased the chemical yield of this cross-metathesis reaction. A hypothetical reaction pathway to give 17 is
shown in Scheme 3.  The diene (14) may undergo faster ring-opening cross-metathesis!? with a carbene
complex (18) at the 6,7-cis olefin than at the vinyl group to give 19, which should form the epimer (17).

Thus, the triene (7) was synthesized utilizing diethylzinc-mediated umpolung of the ®-allyl palladium
complex. A highly diastereoselective ring-closing metathesis reaction of 7 was achieved to give the diene
(14).  Although the final cross-metathesis reaction was not improved, we were able to synthesize the AB-
ring fragment (16) of ciguatoxin in only 8 steps from 1.  Mechanistic investigation of the C5 epimerization

process to yield 17 is currently underway in our laboratory.
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Selected data of 14: '"H-NMR (500 MHz, CDCl,) 8 2.39 (1H, m, H8), 2.64 (1H, m, H8), 3.19 (1H, td, J = 9.0, 4.0 Hz,
H9), 3.39 (1H, ddd, J = 9.0, 5.0, 2.0 Hz, H13), 3.47 (1H, t, / = 9.0 Hz, H12), 3.50 (1H, t, J = 9.0 Hz, H10), 3.55 (IH,
dd, J = 10.5, 5.0 Hz, H14), 3.61 (1H, t, J = 9.0 Hz, H11), 3.64 (1H, dd, J = 10.5, 2.0 Hz, H14), 443 (IH,d, /=110
Hz, CH,Ph), 447 (1H, d, J = 12.5 Hz, CH,Ph), 4.52 (1H, d, J = 12.5 Hz, CH,Ph), 4.53 (1H, m, H5), 4.69 (1H, d, J =
11.0 Hz, CH,Ph), 4.77 (1H, d, J = 11.0 Hz, CH,Ph), 4.93 (1H, d, J = 11.0 Hz, CH,Ph), 5.12 (I1H, dt, J = 10.0, 1.5 Hz,
H3), 5.27 (1H, dt, J = 17.0, 1.5 Hz, H3), 5.75 (2H, m, H6 and H7), 5.90 (1H, ddd, J = 17.0, 10.0, 6.0 Hz, H4), 7.03 (2H,
m), 7.19-7.37 (13H, m); ESI-MS, Calcd for C;;H;,0sNa (M+Na*) 535.2460, Found 535.2477.

Selected data of 16: '"H-NMR (500 MHz, CDCl;) 8 1.99 (3H, s, Ac), 2.02 (3H, s, Ac), 2.46 (1H, m, H8), 2.71 (1H, ddd, J
=16.0, 8.0, 4.0 Hz, H8), 3.25 (IH, td, J = 9.0, 4.0 Hz, H9), 3.46 (1H, ddd, / = 9.0, 5.0, 2.0 Hz, H13), 3.56 (IH, t, /= 9.0
Hz, H10), 3.56 (1H, t, / = 9.0 Hz, H12), 3.63 (1H, dd, J = 10.5, 5.0 Hz, H14), 3.67 (1H, t, J = 9.0 Hz, H11), 3.71 (1H,
dd, J =10.5, 2.0 Hz, H14), 3.99 (1H, dd, J = 12.0, 7.5 Hz, H1), 4.18 (1H, dd, J = 12.0, 4.0 Hz, H1), 4.51 (1H, d, J = 105
Hz, CH,Ph), 4.54 (1H, d, J = 12.0 Hz, CH,Ph), 4.59 (1H, d, J = 12.0 Hz, CH,Ph), 4.62 (1H, m, H5), 478 (1H, d, J =
11.0 Hz, CH,Ph), 4.83 (1H, d, J = 11.0 Hz, CH,Ph), 4.95 (1H, d, J = 10.5 Hz, CH,Ph), 5.51 (1H, m, H2), 5.76 (1H, ddd,
J=155,6.5, 1.5 Hz, H3), 5.77 (1H, m, H6), 5.84 (1H, m, H7), 5.92 (1H, ddd, J = 15.5, 5.5, 1.0 Hz, H4), 7.18 (2H, m),
7.22-7.38 (13H, m); MALDI-TOFMS, Calcd for C30H,s0O5Na (M+Na*) 679.2883, Found 679.3025.

Selected data of 17: '"H-NMR (500 MHz, CDCl;) 8 2.00 (3H, s, Ac), 2.02 (3H, s, Ac), 2.34 (1H, m, H8), 2.65 (1H, ddd, J
=175, 7.5, 4.0 Hz, H8), 3.39 (IH, td, J = 9.5, 4.0 Hz, H9), 3.44 (1H, m, H13), 3.53 (IH, t, J = 9.0 Hz, H12), 3.62 (1H,
m, H14), 3.63 (1H, t, J = 9.0 Hz, H11), 3.67-3.71 (2H, m, HI10 and H14), 4.02 (1H, dd, J = 1 1.5, 6.0 Hz, H1), 4.18 (IH,
dd, J = 11.5,3.5 Hz, H1), 449 (1H, d, J = 11.0 Hz, CH,Ph), 4.53 (1H, d, J/ = 12.0 Hz, CH,Ph), 4.58 (1H, d, / = 12.0 Hz,
CH,Ph), 4.78 (1H, d, J = 11.0 Hz, CH,Ph), 4.80 (1H, d, J = 11.0 Hz, CH,Ph), 4.89 (1H, m, H5), 4.95 (1H, d, / = 1.0
Hz, CH,Ph), 5.44 (1H, m, H2), 5.67 (1H, m, H6), 5.69 (1H, ddd, J = 15.5, 6.0, 1.5 Hz, H3), 5.77 (1H, m, H7), 5.82 (1H,
ddd, J = 15.5, 5.0, 1.0 Hz, H4), 7.18 (2H, m), 7.22-7.38 (13H, m); MALDI-TOFMS, Calcd for C3H,OsNa (M+Na*)
679.2883, Found 679.3056.
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